Complex and Homomorphic Chromatic Number of Signed Planar Simple Graphs

نویسندگان

چکیده

We introduce the notion of complex chromatic number signed graphs as follows: given set $${\mathbb {C}}_{k,l}=\{\pm 1, \pm 2, \ldots , k\}\cup \{\pm 1i, 2i, li\}$$ where $$i=\sqrt{-1}$$ a graph $$(G,\sigma )$$ is said to be (k, l)-colorable if there exists mapping c vertices G {C}}_{k,l}$$ such that for every edge xy we have $$\begin{aligned} c(x)c(y)\ne \sigma (xy) |c(x)^2|. \end{aligned}$$ The $$(G, denoted $$\chi _{com}(G, defined smallest order admits l)-coloring. In this work, after providing an equivalent definition in language homomorphisms graphs, show are planar simple which not 4-colorable. That say: neither (2, 0)-colorable, nor (1, 1)-colorable, (0, 2)-colorable. 0)-colorable was subject conjecture by Máçajová, Raspaud and Škoviera recently disproved Kardoš Narboni using dual notion. provide direct approach short proof. 1)-colorable recent Jiang Zhu disprove work. Noting 2)-coloring same 0)-coloring -\sigma proves existence whose larger than 4. Further developing homomorphism approach, analogue 5-color theorem, find three minimal each on vertices, without $$K_1^{\pm }$$ (a vertex with both positive negative loop) having property admitting from graph. Finally identify several other problems high interest colorings graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

SIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS

In this paper we study the signed Roman dominationnumber of the join of graphs. Specially, we determine it for thejoin of cycles, wheels, fans and friendship graphs.

متن کامل

Domination and Signed Domination Number of Cayley Graphs

In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

Projective-planar signed graphs and tangled signed graphs

A projective-planar signed graph has no two vertex-disjoint negative circles. We prove that every signed graph with no two vertex-disjoint negative circles and no balancing vertex is obtained by taking a projective-planar signed graph or a copy of −K5 and then taking 1, 2, and 3-sums with balanced signed graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2022

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-021-02433-3